If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-53x+336=0
a = 2; b = -53; c = +336;
Δ = b2-4ac
Δ = -532-4·2·336
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-53)-11}{2*2}=\frac{42}{4} =10+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-53)+11}{2*2}=\frac{64}{4} =16 $
| y−21/4=−6 | | 483+161=p | | 1/2x+3/4=21/2 | | n(n-1)(n-2)(n-3)=20736 | | -32x-3=33 | | -7=5x+12 | | 3(x+2)²+10=85 | | 28x+11=51 | | 40+2x=100+3x | | (x4)4=(x10) | | -6x=31+5 | | 23(12x−14)=−34(89x+29) | | 6(7+x)=264 | | -7=+60x | | 148+3x=220-5x | | 5r–12+4r=3r+8 | | (4x+17)+(10x-33)=180 | | 3p+6=14p-5 | | 2x+3(3)=14 | | 3x+21=18-5 | | 2x-43=x+16 | | 56=6-1/2x | | 20+0.50+50=t | | 4x+20=6x–14 | | 7y+5y=6y–2y | | 25x+50=20x-25 | | -13=-5x | | 2x^2-53x-336=0 | | 75/n=25 | | X+6+3x=2(x+4) | | 2x+3(3x-27)=4 | | 2y-70+120=180 |